14 research outputs found

    Metabolic and Expression Changes Associated with a Mouse Model of Intrauterine Growth Restriction (IUGR)

    Get PDF
    Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is suboptimal, resulting in an infant born small for gestational age (\u3c10th percentile) and is associated with metabolic disorders such as type 2 diabetes in adulthood. This study aims to understand tissue-specific adaptations to fetal undernutrition which predispose the individual to metabolic disorders in adulthood. A model of growth restriction in mice was established using 70% of maternal ad libitum total food (g) (E6.5-birth). At weaning, male offspring received standard chow or a HFHS diet. Body weight and random blood glucose levels were measured at 6 months. To assess metabolism at 6 or 7 months, glucose tolerance, pyruvate challenge and hepatic portal vein insulin challenge tests were administered and serum peptide markers for obesity and diabetes were measured. Metabolic cages were also used at 2 and 7 months to measure activity, food intake and respiratory exchange ratios (RERs). Adult liver, adipose and skeletal muscle and fetal liver was collected for RNA sequencing. Maternal nutrient restricted (MNR) offspring were growth restricted with disproportionately smaller fetal livers. 19% of standard chow-fed MNR offspring became glucose intolerant. On an isocaloric high-fat high-sugar diet no differences in MNR growth or glucose metabolism were detected. However, RERs were reduced at all timepoints in MNR on a HFHS relative to MNR on standard chow. Differences in transcription of genes involved in hypoxia signalling were detected and HIF-2a and HIF-3a proteins were increased in fetal liver of MNR offspring. Genes differentially expressed in the fetus were not differentially expressed at 6 months. Gene expression of metabolically regulatory transcripts in liver, adipose and skeletal muscle did not differ in all MNR and glucose intolerant MNR relative to controls. This model results in a susceptible and non-susceptible population of maternal nutrient restricted offspring and supports the concept of hypoxia signalling contributing to fetal adaptations. Understanding adaptations in hepatic hypoxia signalling in response to fetal undernutrition and how they vary in susceptible and unsusceptible populations will provide insight into how fetal nutrition can influence adult metabolism

    Evidence of increased hypoxia signaling in fetal liver from maternal nutrient restriction in mice.

    Get PDF
    BACKGROUND: Intrauterine growth restriction (IUGR) is a pregnancy condition where fetal growth is reduced, and offspring from IUGR pregnancies are at increased risk for type II diabetes as adults. The liver is susceptible to fetal undernutrition experienced by IUGR infants and animal models of growth restriction. This study aimed to examine hepatic expression changes in a maternal nutrient restriction (MNR) mouse model of IUGR to understand fetal adaptations that influence adult metabolism. METHODS: Liver samples of male offspring from MNR (70% of ad libitum starting at E6.5) or control pregnancies were obtained at E18.5 and differential expression was assessed by RNAseq and western blots. RESULTS: Forty-nine differentially expressed (FDR \u3c 0.1) transcripts were enriched in hypoxia-inducible pathways including Fkbp5 (1.6-fold change), Ccng2 (1.5-fold change), Pfkfb3 (1.5-fold change), Kdm3a (1.2-fold change), Btg2 (1.6-fold change), Vhl (1.3-fold change), and Hif-3a (1.3-fold change) (FDR \u3c 0.1). Fkbp5, Pfkfb3, Kdm3a, and Hif-3a were confirmed by qPCR, but only HIF-2a (2.2-fold change, p = 0.002) and HIF-3a (1.3 p = 0.03) protein were significantly increased. CONCLUSION: Although a moderate impact, these data support evidence of fetal adaptation to reduced nutrients by increased hypoxia signaling in the liver

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub (https://github.com/jaydevine/MusMorph)

    MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

    Get PDF
    Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of standardized mouse morphology data spanning numerous genotypes and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-based phenotyping pipeline that combines techniques from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images, dense anatomical landmarks, and segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts are available on FaceBase ( www.facebase.org , https://doi.org/10.25550/3-HXMC ) and GitHub ( https://github.com/jaydevine/MusMorph )

    Lewy Body Dementia Association’s Research Centers of Excellence Program: Inaugural Meeting Proceedings

    Full text link
    Abstract The first Lewy Body Dementia Association (LBDA) Research Centers of Excellence (RCOE) Investigator’s meeting was held on December 14, 2017, in New Orleans. The program was established to increase patient access to clinical experts on Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD), and to create a clinical trials-ready network. Four working groups (WG) were created to pursue the LBDA RCOE aims: (1) increase access to high-quality clinical care, (2) increase access to support for people living with LBD and their caregivers, (3) increase knowledge of LBD among medical and allied (or other) professionals, and (4) create infrastructure for a clinical trials-ready network as well as resources to advance the study of new therapeutics.https://deepblue.lib.umich.edu/bitstream/2027.42/148286/1/13195_2019_Article_476.pd

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Advanced Maternal Age Differentially Affects Embryonic Tissues with the Most Severe Impact on the Developing Brain

    No full text
    Advanced maternal age (AMA) poses the single greatest risk to a successful pregnancy. Apart from the impact of AMA on oocyte fitness, aged female mice often display defects in normal placentation. Placental defects in turn are tightly correlated with brain and cardiovascular abnormalities. It therefore follows that placenta, brain and heart development may be particularly susceptible to the impact of AMA. In the current study, we compared global transcriptomes of placentas, brains, hearts, and facial prominences from mid-gestation mouse conceptuses developed in young control (7–13 wks) and aging (43–50 wks) females. We find that AMA increases transcriptional heterogeneity in all tissues, but particularly in fetal brain. Importantly, even overtly normally developed embryos from older females display dramatic expression changes in neurodevelopmental genes. These transcriptomic alterations in the brain are likely induced by defects in placental development. Using trophoblast stem cells (TSCs) as a model, we show that exposure to aging uterine stromal cell-conditioned medium interferes with normal TSC proliferation and causes precocious differentiation, recapitulating many of the defects observed in placentas from aged females. These data highlight the increased risk of AMA on reproductive outcome, with neurodevelopment being the most sensitive to such early perturbations and with potential for lifelong impact
    corecore